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Abstract— Modern warehouses process millions of unique
objects which are often stored in densely packed containers.
To automate tasks in this environment, a robot must be able
to pick diverse objects from highly cluttered scenes. Real-
world learning is a promising approach, but executing picks
in the real world is time-consuming, can induce costly failures,
and often requires extensive human intervention, which causes
operational burden and limits the scope of data collection and
deployments. In this work, we leverage interactive probes to
visually evaluate grasps in clutter without fully executing picks,
a capability we refer to as Interactive Visual Failure Predic-
tion (IVFP). This enables autonomous verification of grasps
during execution to avoid costly downstream failures as well
as autonomous reward assignment, providing supervision to
continuously shape and improve grasping behavior as the robot
gathers experience in the real world, without constantly requir-
ing human intervention. Through experiments on a Stretch RE1
robot, we study the effect that IVFP has on performance - both
in terms of effective data throughput and success rate, and show
that this approach leads to grasping policies that outperform
policies trained with human supervision alone, while requiring
significantly less human intervention. Code, datasets, and videos
available at https://robo-ivfp.github.io

I. INTRODUCTION

The ability to grasp diverse objects from cluttered en-
vironments is central to many robotic applications: from
picking items off warehouse shelves to unloading groceries
at home. Robots that can reliably grasp objects can automate
tasks such as object picking, sorting, and packing. However,
developing robust grasping behavior is not trivial, especially
in unstructured environments with clutter and large amounts
of object diversity. For example, modern warehouses process
millions of unique objects from rigid to highly deformable
with various shapes and sizes. These objects are often
densely packed into highly cluttered containers. The diverse
and complex dynamics of such environments make simulat-
ing or directly modeling the objects challenging.

Learning from real-world experience is a promising ap-
proach that circumvents the challenges of simulation, but
typically requires extensive human supervision both in terms
of providing labels and in terms of resetting up scenes for
autonomous data collection. Additionally, executing picks in
the real world is time-consuming, can induce costly failures
or object damage, and often requires extensive human inter-
vention. During training, this significantly increases the bur-
den of data collection and limits the scale at which data can
be collected. During execution, failures can be irreversible
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Fig. 1. (a) A Stretch RE1 robot picking objects from densely packed
containers in an industrial warehouse setting. (b) The robot’s gripper
grasping various objects from cluttered bins. The robot must handle a
diverse set of objects with various shapes, sizes, and physical properties.
To successfully pick an object, the robot must grasp and extract the target
object without dislodging the other objects in the container.

or require difficult recovery, which can disrupt operational
efficiency and limit the viability of robot deployments.

Ideally, failures would be detected early in the picking
process, without requiring full execution to determine if a
pick will succeed. This would enable us to avoid costly failed
picks before they happen. Such capability could also be used
to autonomously reward picks without disturbing the scene,
providing supervision to continuously shape and improve
picking behavior as the robot performs picks in the real
world, while minimizing human intervention. We observe
that picking can be divided into two sub-tasks: grasping
and extraction. Grasping success is critical and highly infor-
mative of pick success, while irreversible failures typically
happen during extraction. This presents an opportunity to
avoid costly failures by predicting success before extraction.

However, it’s often difficult to determine whether a grasp
is successful and stable from passive visual observation alone
due to partial observability, an issue that is compounded
by the low visibility and high occurrence of occlusions
in densely packed bins. Tactile feedback can help, but is
insufficient due to being unable to detect certain modes of
failure that are common in cluttered scenes, such as multi-
picks. To address this challenge, we draw on ideas from
interactive perception, a broad class of techniques in which
the environment is manipulated to create rich sensory signals
that would not be present through passive perception alone
[1]. By using interaction to probe for information about
the stability of a grasp, we can visually detect failures that
are not perceivable by passive vision or tactile feedback. In



doing so, we can both improve the training throughput since
interventions can be minimized and the detected failures can
be used to finetune grasp strategies, and also improve success
rates since unstable grasps can be pre-empted and avoided.

While detecting suboptimal grasps using probes is useful
for both training throughput and evaluation success rate,
it can be challenging to actually perform this detection
autonomously. On the other hand, humans possess a re-
markable ability to visually judge grasp quality and refine
their judgement through visual feedback [2] while only
partially executing grasps. We are interested in exploiting this
ability by directly leveraging human feedback for learning
to perform and evaluate robotic grasping behavior, both
in terms of the actual grasping behavior and in terms of
preemptive evaluation of unsuccessful grasps. We propose a
framework in which a human first demonstrates a potential
grasp by teleoperating a robot, then observes the robot
using probing motions to reveal information about the object
configurations in the cluttered scene and test the stability of
the grasp. We find that by observing the robot verify their
grasp through interaction, humans are able to quickly and
accurately classify grasp success.

This enables us to train an interactive visual grasp classi-
fier capable of evaluating grasps in clutter without executing
full picks, a capability we refer to as Interactive Visual
Failure Prediction (IVFP). Such a capability can be used
to autonomously verify grasps during execution to avoid
costly downstream failures, which directly improves success
rates. IVFP can also be used to autonomously reward grasps
as the robot performs picks in the real world, enabling
real world learning to improve grasp success with minimal
human intervention. Moreover, during evaluation at test time,
expensive failures can be preempted by first performing inter-
active probing and IVFP, and avoiding risky and unsuccessful
grasps. We evaluate our approach in a real-world robot
deployment using a Stretch RE1 in an industrial warehouse
setting. Our experiments show that IVFP can immediately
improve picking success by performing introspective online
verification. Moreover, we show that IVFP used as a reward
function can help improve grasping policies to outperform
policies learned through imitation alone. Finally, we show
that data collection with IVFP requires significantly less
human intervention than typical data collection pipelines
wherein picks are fully executed. This suggests that inter-
active probing can provide significant gains both in terms of
training throughput and in terms of overall system success
rate in cluttered warehouse settings.

II. RELATED WORK

A. Learning to Grasp

Recent advancements in machine learning and deep learn-
ing have paved the way for the development of data-driven
grasp learning techniques. These approaches enable robots to
learn grasping strategies based on raw sensory inputs, with-
out any prior knowledge or explicit modeling of the target
objects. For a survey on learning based robotic grasping we
refer the reader to [3]. The vast majority of prior works focus

on learning to select grasp configurations in advance, prior to
making contact with the target object [4]–[11]. Most similar
to our work, Calandra et al. [12] propose the use of passive
visio-tactile feedback to assess grasps after contact. However,
we find that passive feedback is not sufficient for predicting
failures in highly cluttered scenes. In this work, we show that
rich visual signals can be acquired through interaction, and
that by using interaction to test our grasps, we can iteratively
adjust and improve grasps from vision alone.

B. Interactive Perception

Interactive perception is an active area of research in-
volving agents that perform physical interactions to obtain
information about the latent state of a partially observed
environment [1]. Similar to our work, many existing ap-
proaches use robot interaction to assess the state of a desired
task [12]–[15], but prior works typically rely only on tactile
or proprioceptive feedback. In contrast, we look to assess
the state of our task from the visual feedback produced
by interaction. Further, the vast majoriy of prior works
use interactive behaviors only during task execution. Most
similar to our work, Huang et al. [16] recently propose
employing interactive perception behaviors as a reward func-
tion for training task policies. However, their approach is
limited to controlled environments where ground truth suc-
cess and failure examples can be synthesized (e.g. simulated
environments or mechanically controlled environments). In
this work, we propose using human supervision to train
interactive behaviors that can serve as reward functions for
real-world reinforcement learning in uncontrolled environ-
ments. Additionally, while their work uses interaction to
retrospectively test for failure after task completion, we
propose to use interaction during the picking task to predict
and avoid future down-stream failures.

III. PROBLEM STATEMENT

Consider the picking task illustrated in Figure 1. The task
is initiated when the robot arrives at a scene of diverse objects
densely packed into a cluttered bin. The robot must grasp and
extract a given target object without grasping other objects
in the bin. The picking task is performed by a manipulation
robot with Cartesian motion and a parallel-jaw gripper.

Each grasp is defined as a set of variables determining
actions of the robot: a 3D point (x, y, z) indicating the grasp
point and a pre-grasp gripper width w.

Let G be the set of all possible grasps, and S the set
of scene states. At each timestep t, the current state st ∈
S is defined by the bin layout, the poses and states of all
objects in the bin, and the pose and state of the robot. The
robot does not have access to the state st, but only to an
observation ot. An observation ot = (It,Mt) includes an
RGB-D camera image It and the target object mask Mt.
Given the observation ot, the robot’s goal is to generate a
grasp action at ∈ G. Once a grasp is generated and executed,
the robot performs a fixed extraction motion. The task is
considered successful if the target object masked by Mt is
extracted from the bin with all other objects remaining in
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Fig. 2. A diagram of the proposed framework for learning to grasp with Interactive Visual Failure Prediction (IVFP). The framework consists of two
stages of learning. Stage 1: A human demonstrates the target task and classifies their success on the task based on the observations produced by an
interactive perception policy. The human demonstrations are used to train an initial task policy and the labels are used to train a task classifier. In Stage 2,
the robot acts using the latest task policy and autonomously determines task reward using the learned classifier. The policy is updated offline periodically
to maximize predicted reward.

the bin. Once the entire pick has been executed, whether
successful or not, the process starts over on the next scene,
which may be a slightly modified or entirely new scene.

IV. METHOD

We are interested in developing IVFP capability for two
important applications. First, we want to verify potential
grasps in order to avoid costly failures downstream. Sec-
ond, because learning methods are limited by the cost of
collecting human supervision, we are interested in using
IVFP to autonomously reward grasps and improve them
through experience. IVFP provides multiple advantages for
these purposes. The interaction produces visual feedback that
is highly informative of pick success, supporting accurate
grasp classification, and the probe allows us to classify grasps
without executing a full pick, enabling execution and training
operations with minimal human intervention.

To capture these advantages, the probe design should
prioritize (1) reversibility, so as to not disturb the scene,
and (2) information gain, to enable accurate classification.
We design our probes as a partial execution of the extraction
step, where the item is lifted and pulled, but not removed
from the bin. In this way, we can gain information about
the grasp’s impact on extraction before irreversible failures
can occur. We also note that by designing the probe as
a partial execution of the extraction step, we can simply
continue with extraction in the case of success, further
facilitating efficient data collection. Since it is challenging
to heuristically determine grasp success from probes, we use
human supervision to extract the rich information provided
by the probe. We note that humans have the ability to both
demonstrate potential grasps and perceive when a grasp will
fail from interaction, and we utilize human operators for both
types of supervision.

We illustrate our framework for learning with IVFP in
Figure 2. Our approach consists of a learned grasping task
policy πθ, a learned grasp classifier Cϕ, an interactive per-
ception policy πIP , and two stages of learning. In the first
stage, a human demonstrates a grasp, observes the interactive
perception policy πIP probing their grasp, then subsequently

labels their grasp based on the observations produced by
the probe. The demonstrations are used to train an initial
grasping task policy πθ and a grasp classifier Cϕ is trained
from the labels.

In the second stage, we use the components learned from
human supervision as building blocks for learning from
experience. Now, the robot autonomously generates potential
grasps using the latest task policy πθ. The learned classifier
Cϕ is used both for avoiding failures and for autonomously
determining task reward. Using the reward determined by
Cϕ, the policy πθ is updated offline periodically to maximize
predicted reward.

A. Modeling the Grasp Policy

At each timestep t, the input to the grasp policy is the
current observation ot = (It,Mt) and the output is a grasp
action at = (wt, xt, yt, zt). The grasp policy is responsible
for choosing grasps that are most likely to succeed based on
the current observation. Note that the grasp policy performs
the initial grasp, while interactive probing and grasp success
classification are done with a separate partial execution
strategy outlined in Section IV-A.

We separate the policy into two action-value modules (Q-
functions) that correspond to grasp success: The gripper
width module Qwidth chooses a pre-grasp gripper width,
and conditioned on the chosen gripper width, the grasp
point module Qgrasp decides where to grasp. Both modules
are implemented as neural networks and their architectures
are illustrated in Figure 3a. Note that rather than directly
outputting grasp positions and widths, we represent these
with implicit functions as noted in prior work [8].

For both modules, the raw observation ot is first embedded
into a pre-trained feature representation space by a vision
transformer backbone. This backbone serves as a function
that takes the raw observations ot as input and outputs
patch embeddings Ft. The gripper width module Qwidth first
applies a global average pooling layer to the patch embed-
dings Ft followed by a linear classifier. This network models
an action-value function Qwidth(wt|Ft) that correlates with
grasp success which we sample from to obtain the pre-grasp
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Fig. 3. (a) Architectures of the neural networks used to model the grasp policy πθ . The policy takes as input the current RGB image It and target object
mask Mt. The output includes a 3D grasp position (xt, yt, zt) and pre-grasp gripper width wt. (b) Architecture of the neural network used to model the
grasp classifier Cϕ. The input to the classifier is a video of the interactive perception policy πIP testing a grasp. The output is a grasp class prediction ct.

gripper width wt:

wt = argmax
w

Qwidth (w | Ft)

The grasp point module Qgrasp models a spatial action-
value function [17]–[19] taking input γt = (Ft, wt) and
outputting a dense pixelwise prediction Qgrasp ∈ RH×W

of action-values which are used to select a grasp point:

(ut, vt) = argmax
(u,v)

Qgrasp ((u, v) | γt)

To execute the grasp, we map the selected point (ut, vt)
from the camera image frame to a 3D grasp location
(xt, yt, zt) using the depth channel of the image and the
known camera calibration. We base our network Qgrasp

on the Upernet [20] architecture for its high efficiency on
spatial tasks. The visual feature embeddings Ft are fed
through a Feature Pyramid Network [21] and the outputs are
fused. We project the pre-grasp gripper width wt to match
the dimensions of the fused feature map, concatenate them
together, then finally apply a convolutional layer to produce
a dense pixelwise prediction.

Both networks Qwidth and Qgrasp are initially trained in
a supervised maximum likelihood manner to predict grasp
actions that imitate the human demonstrations. The networks
are trained separately with Qwidth using standard cross
entropy loss and Qgrasp using a modified version of the
cross entropy loss that incorporates a Gaussian penalty to
encourage the model to make predictions that are close to
the target point without requiring exact matches.

B. Interactive Perception and Grasp Success Classification

After performing a grasp according to πθ, we want to
predict if the grasp will succeed in order to avoid costly
failures during execution and efficiently reward grasps during
training. But it is difficult to determine grasp success from
passive observation alone, so to better inform grasp clas-
sification, the robot verifies the grasp using the interactive
perception policy πIP . For this work, we used a fixed
interactive perception policy that performs a cyclic lift-and-
pull probing motion to test the grasp. The motion is designed
to be a reversible partial execution so as to not perturb the

scene, while being able to be executed directly if the grasp
is predicted to be successful. This motion produces a set of
visual observations IIPt .

Based on these observations, the grasp classifier Cϕ is
responsible for determining whether a continuation of this
particular grasp would be successful or not. The classifier is
implemented as a neural network that takes IIPt as input and
outputs a grasp class prediction ct ∈ {SUCCESS,FAIL}. An
illustration of the network architecture can be found in Figure
3b. The network begins with a vision transformer backbone
which is pre-trained using a masked auto-encoding scheme
[22] on Something-Something v2 [23], a large-scale dataset
with 220,847 videos of humans manipulating objects. The
backbone is used to obtain patch embeddings F IP

t followed
by a global average pooling layer and finally a linear
classifier. This network models the distribution P (ct|IIPt )
from which we sample ct. The network Cϕ is trained in a
supervised manner using standard cross entropy loss.

We combine the interactive perception policy πIP and
the learned classifier Cϕ to achieve IVFP capability. This
capability allows us to both autonomously determine rewards
for learning from experience and autonomously verify grasps
during execution. In the following sections we describe each
of these applications in detail.

C. Using IVFP for Autonomous Reinforcement Learning

By imitating human demonstrated grasps, we can boot-
strap our initial grasping task policy πθ. As the performance
of this policy is limited by the cost of human supervision,
we want to further improve the policy by learning from
experience. For this purpose, the IVFP capability achieved
through the combination of πIP and Cϕ serves as an interac-
tive reward function (IRF) [16]. After each grasp action at,
the policy πIP is executed to produce IIPt which is used by
Cϕ to predict the grasp classification ct. This classification
is used to directly determine the reward Rt:

Rt =

{
1, if ct = SUCCESS
−1, if ct = FAIL

After accumulating a dataset of action-reward pairs, we
fine-tune the grasping task policy πθ using an off-policy



Fig. 4. A subset of the objects used for evaluation. Our item set includes 42
unique objects with a variety of object sizes, shapes, and physical properties.
The objects can be rigid or highly deformable.

variant of the REINFORCE algorithm [24] in a contextual
bandit setting. Specifically, we update the policy to maximize
the expected reward using the policy loss:

L = −E[Rt · ∇θ log(πθ(at|st))]

D. Using IVFP for Verification in the Loop

In addition to autonomously determining grasp rewards,
we want to utilize the IVFP capability to verify grasps and
avoid costly failures. To this end, at test-time we sample
multiple grasp parameters from our action-value networks
Qwidth and Qgrasp so that we can iteratively attempt alter-
native grasps in the case of failure. First we sample multiple
gripper widths from Qwidth and each candidate gripper width
is input into Qgrasp along with the patch embeddings Ft.
This results in a set of action-value maps, one for each
candidate gripper width. We then sample multiple (w, u, v)
combinations across all of the action-value maps weighted
by predicted grasp success. We first execute the grasp param-
eters that are most likely to succeed, verify that grasp using
πIP , and evaluate the grasp using Cϕ. When a failed grasp
is detected, we move on to the grasp parameters that are the
next most likely to succeed. This process repeats until we
have either detected a successful grasp or exhausted our set
of candidate grasp parameters.

V. EXPERIMENTAL SETUP

A. Hardware

To evaluate our approach, we conduct a series of experi-
ments on a Stretch RE1 robot [25]. The robot’s mobile base,
arm lift, and telescoping arm are moved in conjunction to
reach a 3D target grasp point. An Intel RealSense D435i
RGB-D camera is mounted to the frame and a 185 degree
FOV fisheye camera is mounted to the wrist, providing
observations for the grasp policy and the grasp classifier
respectively. We deploy the robot in front of a picking work-
cell, like those found in industrial fulfillment warehouses,
with a shelving unit housing densely packed bins.

B. Item Set

Our item set consists of 42 unique objects with various
shapes, sizes, and physical properties, including deformable
and bagged objects. 32 of the objects are used during training
and 10 are held out for unseen object evaluation. A subset
of the objects can be seen in Figure 4.

C. Data Collection

Our dataset consists of 2,143 human teleoperated picks. To
teleoperate the robot, participants use a custom web-based
interface designed specifically for this task. First, a camera
image of the target bin is displayed and the participant is
prompted to select a grasp point by clicking on the image.
We map the selected (u, v) position from the camera image
to a 3D grasp location using the depth image and known
camera calibration. Next, the robot moves its end effector to
a pre-grasp pose relative to the selected grasp point and the
user is prompted to select a pre-grasp gripper width using a
slider. Finally, the robot executes the grasp followed by our
fixed interactive perception motion policy, effectively testing
the participant’s chosen grasp parameters. After watching
the images produced by the interactive perception motion,
the participant chooses to classify the grasp as a success
(in which case the robot executes a fixed extraction policy)
or as a failure (in which case the robot resets and a new
grasp point is chosen). In total we had 12 participants
provide demonstrations including one of the researchers and
11 colleagues recruited from our department.

D. Training Details

In the demonstrations, successful picks are more common
than failed picks, resulting in an imbalanced dataset. For
classification we undersample successes to create a more bal-
anced dataset consisting of 975 successes and 961 failures.

E. Baselines and Experiments

Centroid: A heuristic baseline always grasping from the
center of the masked object.

Random: A random baseline sampling points uniformly
from within the masked pixels.

Imitation Learning (IL): A learned baseline using the
initial grasping policy produced by imitating the behavior of
the human demonstrations.

Verification-in-the-Loop (IL+VitL): In this method,
IVFP is used to verify grasps and retry failed grasps until
success or no candidates grasps remain.

Reinforcement Learning (RL): In this method, the pre-
dictions from IVFP are used to fine-tune the grasp policy
using reinforcement learning. We report results after training
for 20 iterations and 50 iterations. In each iteration, we
collect a batch of 64 grasps.

F. Evaluation Metrics

To quantify these approaches we report on the following
two evaluation metrics:

Success Rate (SR) is the percentage of picks for which
the target object was extracted successfully.
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Fig. 5. Qualitative examples of IVFP utilized for Verification in-the-Loop (VitL). Failed grasps (left) are identified by IVFP and iterated upon to produce
successful grasps (right). In (a) and (d) the initial grasp configuration resulted in a multi-pick failure. In (c) the initial grasp configuration resulted in
collision with the bin and a subsequent missed-pick. In (b) the initial grasp configuration resulted in a missed-pick.

Method Seen objects Unseen objects
SR UPH SR UPH

Centroid 44.83% 36.08 - -
Random 29.61% 25.2 - -
IL 56.76% 45.92 49.16% 40.18
IL+ViTL 67.33% 43.76 57.51% 37.05
RL @ 20 69.16% 56.58 61.66% 48.8
RL @ 50 73.33% 58.4 62.51% 49.6

TABLE I
EVALUATION RESULTS OF VARIOUS GRASPING METHODS ACROSS TWO

METRICS: SUCCESS RATE (SR) AND UNITS PER HOUR (UPH).

Units Per Hour (UPH) indicates how many target objects
could be picked per hour, quantifying the speed at which the
robot is picking.

G. Additional Experiments

To study the effect that interaction has on performance, we
perform an ablation study where we compare accuracy of a
model with access to the observations produced from interac-
tion against a model with access to only passive observations.
To evaluate the data throughput benefits and tradeoffs of our
approach, we compare a 1 hour data collection with IVFP
to a 1 hour data collection using a more typical collection
pipeline wherein the robot fully executes each pick. We
report on three metrics: picks collected per hour, human
interventions per hour, and collected label accuracy.

VI. RESULTS

All methods described in Section V were evaluated on both
seen and unseen object sets. For each method, we evaluate
over 10 trials each consisting of 12 picks.

In Table I, we can see that using IVFP for verification in
the loop results in significant performance gains. Qualitative
examples can be seen in Figure 5. This method can be
applied immediately as it requires no additional training.
However, it comes at the cost of operation speed as verifying
every grasp results in a decrease in UPH. Results of RL from
10 to 50 iterations show that we can improve performance
by using IVFP to learn from experience.

The results of our data throughput experiment are sum-
marized in Table II, emphasizing that our approach can
significantly reduce the burden of data collection with a

Method Picks/Hr Interventions/Hr Label Acc.
Full picks 82 24 100%
IVFP 158 6 96%

TABLE II
COMPARISON OF DATA THROUGHPUT TRADEOFFS BETWEEN DATA

COLLECTION WITH FULL PICKS AND WITH IVFP.

Perception Seen objects Unseen objects
Prec. Rec. Acc. Prec. Rec. Acc.

Passive 0.5 0.56 46% 0.43 0.41 41%
Interactive (0.5s) 0.69 0.72 72% 0.61 0.62 64%
Interactive (1.0s) 0.79 0.81 81% 0.72 0.76 75%
Interactive (1.5s) 0.84 0.86 87% 0.81 0.83 83%
Interactive (2.0s) 0.94 0.93 94% 0.92 0.9 90%

TABLE III
PERFORMANCE OF THE LEARNED CLASSIFIER WHEN INTERACTION IS

USED AS COMPARED TO WHEN PASSIVE PERCEPTION IS USED.

minimal impact on collected label accuracy. In Table III, the
results of our ablation study on the effect of interaction show
that interaction is crucial for classification and illustrate the
tradeoff between interaction time and classifier accuracy.

VII. CONCLUSION

In this work, we presented an approach to grasping in
clutter using Interactive Visual Failure Prediction (IVFP).
In our approach, the robot interacts with the environment
by performing a cyclic interactive probe designed to inform
grasp success. We combine the interactive behavior with a
visual classifier learned from human feedback to achieve
IVFP. We perform experiments in the context of a real-
world robot deployment showing that this approach both
improves grasping performance and reduces the burden of
data collection. While effective in our domain, our approach
utilizes a fixed interaction policy which won’t necessarily
generalize to other domains. To address this limitation,
exploring methods of learning interaction policies as in [16]
is an exciting direction. Additionally, our task is performed in
a relatively constrained contextual bandits setting and future
work should explore how to apply IVFP on longer horizon
problems with richer action spaces.
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